
YO U R F I R S T A R D U I N O S k e T c h ·   3 1

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

CHAP TER 1

YOUR FIRST
ARDUINO SKETCH

Tools needed:

• Computer
• USB A to B cable

Parts needed:

• Arduino UNO (1)

It’s time to write your "rst Arduino sketch! A sketch is the
Arduino term for the code that you upload to the device in
order to make it behave how you want it to.

Here’s how this is going to go: I’m going to give you a series
of steps to follow in order to make the sketch work. You will
follow them. Once you’ve completed all of them and gotten
this "rst project to behave how we want it to, we’ll double
back, and I’ll explain the code line-by-line. Alright? All right.
Let’s dive in.

3 2  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

For this "rst sketch as well as the next one, I’m going to be
a little more thorough in my explanation than I will be in
later projects. It’s important to have a strong understanding
of the basics before moving on to more complicated topics.

#e "rst project we’re going to complete is very simple—we
are going to make a light on the Arduino blink on and o$.
Essentially, the Arduino will act like a switch that we can
control using some code.

#e little holes on top of the black bars lining the edges of the
Arduino are called female header pins, or just pins for short.
#ey are used to attach electronic circuitry to the Arduino
by allowing wires to plug directly into them. Each of these
pins has a number to identify it, which is written in white
right next to the pin.

In this sketch, though, we won’t be attaching any wires to
anything—instead, we’re going to work with the Arduino’s
onboard LED, which is an LED light that is hard-wired to
pin 13 on the Arduino (it’s labeled with an L on the surface
of the Arduino board). Because it’s already connected to pin
13, we won’t need to add any extra electronics.

YO U R F I R S T A R D U I N O S k e T c h ·   3 3

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

1. Open the Arduino desktop application. If you haven’t
installed it yet, you can do so at https://www.arduino.cc/
en/Main/So&ware

2. #e window that opens should look something like this:

1. #is is called the Arduino Integrated Development Envi-
ronment (IDE) and is where you’ll be writing all of your
Arduino sketches. If the window that opens doesn’t look
something like this, or if no window opens at all, try the
following to "x it.

3 4  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

 – Click the “New” icon in the sketch window. To "nd it,
"rst look at the checkmark button at the top le& of the
window. #e “New” button is two buttons to the right
of that one. Clicking the “New” button opens a brand
new sketch with the default code already written.

 – If you can’t get the Arduino desktop application to
work on your computer, register for an Arduino Cre-
ate account at https://store.arduino.cc/digital/create
and install the plugin it asks you to. #is will allow
you to use Arduino from your web browser. #e
window looks a bit di$erent in Arduino Create, so it
might be a bit harder to follow along, but all of the
same buttons will be there in some form or other.

2. Type the following code into the sketch by hand. #e rea-
son you are typing it in by hand rather than copy-pasting
it is that writing code e(ciently is di(cult and takes prac-
tice, mostly due to the fact that accidentally mistyping
and breaking your code is easy to do and o&en di(cult
to realize you’ve done, so it’s in your interest to begin
practicing your code-writing accuracy right now. #is
code is written in a programming language called C++,
which is a popular and powerful language related to C
and similar to Java in many ways.

YO U R F I R S T A R D U I N O S k e T c h ·   3 5

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

If you’d rather not type it in by hand, you can "nd all of the
code used in this book at <web link>.

1. Go to File > Save (or press the button on the menu bar
with an arrow pointing down) and save the sketch with
the name “Blink” somewhere on your computer so you
can easily "nd it again.

3 6  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

1. A&er you’ve saved, click the “Verify” button at the top
le& of the window (it looks like a checkmark) to verify
the sketch.

1. #is will tell the computer to process your sketch to see
if there are any errors. #e words “Compiling sketch…”
should momentarily appear on the turquoise bar below
the text area. If the bar below the text window turns
orange, highlights one of the lines in red, and gives you

YO U R F I R S T A R D U I N O S k e T c h ·   3 7

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

a strange error message in the place where it previously
said, “compiling sketch,” follow these troubleshooting
steps; if it turns turquoise and says, “Done compiling,”
move on to step 5.

 – In the event of a syntax error, the IDE should high-
light a line of code in red. #is indicates that the error
is on or adjacent to that line (for instance, sometimes
the error is on the line above). #e error message that
shows up written on the orange bar will provide a
hint about what the error is. Sometimes the error
message is complicated and hard to understand, but
it is o&en useful in the event of a simple error.

 – Ninety-nine times out of 100, Arduino coding errors
are due to the omission of a semicolon. If money
and circumstances permit it, I suggest you tattoo a
semicolon on the back of your dominant hand, and
maybe your forehead as well, to remind you of this.
In the event of a semicolon error, the error message
will read something resembling “expected ‘;’ before
‘}’ token” and highlight the line immediately a&er
the one on which the semicolon is actually missing.

 – Make sure that every line you’ve typed in is exactly
identical to the code typed in the image above. Com-
puter code can be very "nicky about accuracy.

2. If your window says, “Done compiling,” then it’s time
to upload your sketch. Take your USB A to B cable, and
plug the “B” end into your Arduino Uno. Hold o$ on
connecting the “A” end to the computer for now.

3 8  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

1. Now we have to make sure the computer knows what
kind of Arduino board it’s uploading to. Go to Tools >
Board on the menu bar and select “Arduino Uno” from
the rather lengthy list of possible boards.

1. For the last step before we upload our code, we need to
connect the Arduino to the computer and tell the computer
which USB port the Arduino is attached to. #e computer

YO U R F I R S T A R D U I N O S k e T c h ·   3 9

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

will o&en connect to the correct port automatically, but let’s
make sure just in case. First, go to Tools>Port and look at
the options it gives you. Take note of these options, then
close the menu and plug the “A” (normal-looking) end of
the USB cable into a USB port on your computer. Note that
the port names on your computer may be di$erent from
the port names in this image.

1. Now go back to Tools > Port. Notice how a new option
has popped up, probably with the words “Arduino Uno”
in parentheses next to it? Select that one.

4 0  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

1. Upload the sketch by clicking the “Upload” button, which
is directly to the right of the “Verify” button on the top
le& of the window and looks like an arrow pointing to
the right.

1. When it’s done uploading, take a close look at the top of
your Arduino board. #e LED should be blinking on for
one second, o$ for one second, and then turning on and
o$ again in a loop. If it is not doing so, refer to step 7c.

#e light should blink o$…

YO U R F I R S T A R D U I N O S k e T c h ·   41

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

And then on, and then o$ again.

Congratulations! You’ve completed your "rst Arduino proj-
ect! It doesn’t do all that much, of course, but the things that
make this simple little blinking light work make up the core
principles of all Arduino programming.

Almost all of the projects we’re going to work on a&er this
"nd much of their foundation in this project. With that in
mind, it’s very important that we spend enough time on this
project to understand it fully.

understanding the Code
Let’s break it down line-by-line very, very carefully. #e "rst
line reads:

// Blink

#is is what’s called a single-line comment. A comment
allows the coder to leave notes to themselves and others,
label sections of code, and indicate the function of various
sections of code.

4 2  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

To create a single-line comment, type two forward slashes
one a&er the other. Everything on that line of code that
appears a&er the two forward slashes will be grayed out by
the IDE editor and ignored by the Arduino. In other words,
anything you type in a comment a&er those two forward
slashes have absolutely no e$ect on the code, no matter how
profane or idiotic it is. (Keep in mind that if your comments
are indeed profane or idiotic, they may still have an e$ect on
anyone who reads your code.)

#e next three lines are another type of comment:

/* Turns an LED on for one second, off
for one second,

 * and then repeats forever.

 */

#is is a multi-line comment. A multi-line comment func-
tions (or rather does not function at all) exactly the same as
a single-line comment but can stretch across multiple lines.
In order to create a multi-line comment, you have to open it
with /* and close it with */. Anything a&er /* and before */,
regardless of how many lines of code are between them, is
ignored by the Arduino.

Note that when you begin typing a single line comment, the
IDE automatically adds asterisks at the start of each new
line until you close the comment to make it look pretty—
these are not necessary for the Arduino to recognize them

YO U R F I R S T A R D U I N O S k e T c h ·   4 3

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

as comments. #e code would work exactly the same if it
were written like this:

/* Turns an LED on for one second, off for
one second,

and then repeats forever.

*/

You could even move the “end comment” marker to the end
of the second line, like so:

/* Turns an LED on for one second, off for
one second,

and then repeats forever. */

#ere’s a blank line a&er this comment (all blank lines are
ignored by the Arduino), and then we have our "rst line of
code that the Arduino will actually read. #is is where things
start to get interesting. #e line reads:

int LED _ PIN = 13;

#is line creates, or rather, declares a variable. Variables are
used to store values. However, any given variable can only
store a certain type of value. What type of value it can store
is determined when you declare the variable.

In this line, we declare a variable of the type int, name
it LED_PIN, and assign it the value 13. When the Arduino
reads this line of code, it creates a little space in its memory

4 4  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

to store int values and puts the number 13 in that space.
For the remainder of the code, when it encounters the term
LED_PIN, it will check to see what value is stored in the
space it made for LED_PIN. In this sketch, that value will
always be 13 because that’s the digital pin that the onboard
LED is connected to.

#e int variable type is short for “integer” and indicates that
only integer values can be stored inside the variable. An int
variable can hold any integer value, an integer being a num-
ber with no decimal points, such as 5, 0, 28, or 10,000. #ere
is a size limit on the int type, however—it can only be used
to store integer values between -32,768 and 32,767.

#e second part of the statement, LED_PIN, is the name
you’re choosing for the variable. #is can be almost anything,
with a few restrictions. For example, you can’t start your
variable names with numbers, and they can’t have any spaces
or strange characters in them.

For variables that retain the same value for the entire dura-
tion of the code, the standard naming convention in C++, the
programming language that Arduino programming is based
on, is to make the name uppercase and to use underscores
to separate words in the name.

You don’t have to follow standard variable naming conven-
tions if you don’t want to, but it can be helpful to get in the
habit of using them, so the code in this book will use standard
conventions for variable naming, as well as other formatting.
Regardless of how you name your variables, make sure any
name you choose to use is descriptive enough about what it
stores to allow you or someone else who might be reading
your code to "gure out what it’s used for easily.

YO U R F I R S T A R D U I N O S k e T c h ·   4 5

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

A&er LED_PIN, we have a single equals sign. When the Ardu-
ino sees an equals sign in the code, it knows that whatever
number is on the right side of the equals is the number that
should be stored in the variable named on the le& side.

Finally, we have the value we’re assigning to the variable,
13, followed by a semicolon (“;”). Do not forget the semi-
colon. Ninety-nine percent of all programming errors
can be traced to forgotten semicolons. The semicolon
indicates to the compiler that a given statement has come
to a close.

In summary, if you read the line

int LED _ PIN = 13;

as a sentence, it really just means “#e integer called LED_
PIN is equal to thirteen.”

Next, let’s "rst look at this entire block of code. A block is
a portion of code bounded by “curly braces” (the ‘{‘ and ‘}’
characters, respectively) that functions as a complete unit.

void setup() {

// put your setup code here, to run once:

// set the LED pin to be an output

 pinMode(LED _ PIN, OUTPUT);

}

4 6  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

Note that the information inside the block of code is
indented—this is another formatting convention that the
Arduino IDE encourages.

#is entire block of code is called the setup() function. Every
single Arduino sketch must have a setup() function. #e role
of setup() is to run code that initializes various things in the
sketch. It runs all of the code between its open and closed
“curly braces” one single time at the very beginning of the
sketch and then never again until the Arduino is restarted.
In its most basic form, the setup() function looks like this:

void setup() {

}

#e setup() function above has nothing between its curly
braces and thus does absolutely nothing. However, even if
it does nothing, every sketch must have a setup() function,
and every setup() function must look exactly as shown above,
with a “void” initializer, the word “setup()” with the paren-
theses, and open and closed curly braces. Code may option-
ally go between the two curly braces, and there is almost
always something between them.

In our code, we have three things between these brackets.
#e "rst two are just more comments.

// put your setup code here, to run once:

// set the LED pin to be an output

YO U R F I R S T A R D U I N O S k e T c h ·   47

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

However, the last line is something new:

pinMode(LED _ PIN, OUTPUT);

#is is something called a function. #is particular function
is called pinMode() and is built into the Arduino so&ware.
Functions are designed to, well, perform a speci"c function,
and most have parameters that give them the information
required to do their job. In the Arduino IDE, function names
typically appear in orange, with the exception of setup()and
loop(), which are special.

#e function of pinMode() is basically to change one of the
Arduino’s settings. #e Arduino UNO has an onboard LED
that is connected to pin 13. We want to be able to turn this
LED on and o$ by controlling whether power is moving
through pin 13 or not. To do this, we must set the “mode”
of pin 13 to OUTPUT. pinMode() allows us to set any pin
to either the INPUT or OUTPUT mode, provided we tell it
which pin to set the mode of and what mode to set it to. #us,
we give it the parameters by writing them in the parentheses
that come a&er the function name like so:

pinMode(pin#, INPUT/OUTPUT);

In this case, the pin# is 13, and the mode is OUTPUT. How-
ever, we’ve already stored the pin number in the variable
LED_PIN, so we can plug in the parameters as:

pinMode(LED _ PIN, OUTPUT);

4 8  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

#e "nal block of code is called the loop() function:

void loop() {

// put your main code here, to run repeatedly:

 digitalWrite(LED _ PIN, HIGH); // turn LED on

delay(1000); // do nothing for 1000 millisec-
onds (1 second)

digitalWrite(LED _ PIN, LOW); // turn LED off

delay(1000); // do nothing for 1000 millisec-
onds (1 second)

}

#e loop() function is another special function, like setup(),
with the primary di$erence being that loop() will run all of
the code between the curly braces from top to bottom, start at
the top again once it reaches the bottom, and continue to loop
this pattern until the Arduino is turned o$. #is is where
most of the interesting parts of Arduino code can be found.

A&er the comment at the top of the block, we see a new
function, digitalWrite(), as well as a single-line comment
in a location we haven’t seen one in before.

digitalWrite(LED _ PIN, HIGH); // turn LED on

Single-line comments (or multi-line comments, for that mat-
ter) can begin anywhere on any line, even when that same
line has code on it. Just keep in mind that anything at all,

YO U R F I R S T A R D U I N O S k e T c h ·   4 9

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

code or otherwise, that is written to the right of the slashes
will be ignored by the compiler.

digitalWrite() is another function much like
pinMode, but instead of changing a setting,
it controls whether one of the Arduino’s pins
is high or low. Its parameters are:

digitalWrite(pin#, LOW/HIGH)

#e "rst parameter, the pin#, is the pin you want to control
the output of. #e second parameter is the output power
level you want to set that pin to. Setting this parameter to
LOW makes the pin output zero volts. Setting it to HIGH
makes it output "ve volts (or whatever the highest voltage
your board can output is). If we have a component, such as
an LED, connected to that same pin, this allows us to control
whether power is /owing through it and thus whether the
LED is operational.

#erefore, the statement

digitalWrite(LED _ PIN, HIGH); // turn LED on

turns on the onboard LED connected to pin 13 (LED_PIN)
by applying 5V of power across it.

#e next line is as follows:

delay(1000); // do nothing for 1000 millisec-
onds (1 second)

#e third and "nal function of this sketch, delay(), is even
simpler than the "rst two. delay() causes the Arduino to

5 0  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

pause everything it’s doing and freeze for a given number of
milliseconds (1 millisecond = 1/1000 second).

Why milliseconds? Milliseconds provide a higher degree of
precision than seconds, and it’s a unit of time that comes in
very handy when using Arduino and electronics, which can
process data many thousands of times faster than a human
can. In fact, there is no variant of the delay() function built
into Arduino coding that lets you use a larger unit of time
than the millisecond, although there is one that lets you use
a smaller unit of time. delay() has a single parameter: the
number of milliseconds to delay everything for.

delay(milliseconds)

In our case, the parameter is 1000, which means that when
the Arduino reaches this line of code, it will bring everything
to a halt for 1000 milliseconds (AKA 1 second).

#e last two lines of code inside the block look very similar
to the "rst two:

digitalWrite(LED _ PIN, LOW); // turn LED off

delay(1000); // do nothing for 1000 milliseconds
(1 second)

#e only di$erence this time around is that instead of the
second parameter for digitalWrite() being set to HIGH, it is
now LOW, meaning that the Arduino will set the LED_PIN
(pin 10) to LOW (0V), which will turn the LED o$. It will
then do nothing for a second. Once the Arduino has executed
these "nal two lines, it will hit the end of the loop() function,

YO U R F I R S T A R D U I N O S k e T c h ·   5 1

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

as indicated by the curly brace at the end of the line of code,
then go back to the top of the loop() and do everything all
over again.

#at was a lot to take in, so let me rewrite all of the code we
just went through in English, so it makes a little more sense.
#is will be in the form that the compiler will read the code
in, so I’ll skip all the comments.

An integer-type variable with the name LED _
PIN now has the value 13.

Begin the setup function:

LED _ PIN, which is pin 13, is an output.

End the setup function.

Begin the loop function:

Set LED _ PIN (pin 13) to HIGH (5V).

Do nothing for 1000 milliseconds (1 second).

Set LED _ PIN (pin 13) to HIGH (5V).

Do nothing for 1000 milliseconds (1 second).

Go back to the beginning of the loop function.

That’s really it. The code is read line by line, from top
to bottom, executing each command in chronological
order. The ultimate function of this code is found in the
loop function:

5 2  · A R D U I N O F O R A R T I S T S
H o w t o C r e a t e S t u n n i n g M u l t i m e d i a A r t w i t h E l e c t r o n i c s

1. Set LED_PIN to HIGH, which turns on the LED

2. Do nothing for one second, during which time the LED
remains on

3. Set LED_PIN to LOW, which turns o$ the LED

4. Do nothing for one second, during which time the LED
remains o$

5. Go back to step one.

#is process you’ve just undergone—writing a series of com-
mands to tell a computer or Arduino exactly what you want
it to do—is all coding really is. If you can understand this
sketch, you’re more than prepared to move on ahead.

extended learning

Now that you understand how this sketch works, it might be
helpful and fun to play around with the code you’ve already
written to get used to writing your own code. Here are several
simple ways you can modify the code we wrote in this project
to make it work in new and interesting ways.

changing the Length of the deLay

What if you want your LED to blink faster? Simple: change
the number in the delay() functions. #e smaller the delay,
the less time will pass between the light blinking on and
blinking o$. #e larger the delay, the more time will pass
between the light blinking on and blinking o$.

To add an interesting twist, you could give each of the delay()
functions a di$erent parameter. If you make the delay a&er
the light is turned on shorter than the delay a&er the light is
turned o$, what happens?

YO U R F I R S T A R D U I N O S k e T c h ·   5 3

P A R T 1 : G e T T I N G S T A R T e D W I T h A R D U I N O

#e answer is that it will turn on for a brief moment and then
turn o$ for longer. #e light will become just a little blip. Do
the opposite, making the “on” delay longer than the “o$”
delay, and the light will /icker o$ occasionally.

Try changing the delay values, clicking the “verify” button
(the check mark), and uploading your new code to the Ardu-
ino to see what happens.

changing the BLink Pattern

We’ve already written a sketch that turns the LED on, turns
it o$, and repeats. But what if you wanted a di$erent pattern?
What if you wanted to turn it on for a long time, turn it o$
for a long time, then rapidly turn it on and o$ before going
back to the beginning?

If you want to increase the complexity of your blink pattern,
you need to add additional digitalWrite() and delay() func-
tions, with the appropriate parameters, to loop(). Everything
inside the loop() will repeat, so as long as the code inside it is
valid, it can be as long and complicated as you want it to be.

